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Inter-pair symmetry 

Consider  the summat ion  over six non-zero indices,  
where none of  (ul, u2), (u3, u4) and (us, u6) is a pair  
of  equal  numbers .  This case is the most time- 
consuming part of  the calculation. As expla ined  
above, the summat ion  can be restricted to positive 
indices only, where u~ > u2, u3 > u4 and u5 > u6. Sup- 
pose the sixfold summat ion  converges when the upper  
l imit  of  a single summat ion  is some number ,  say M, 
and each of  the indices Ul, u3 and u5 ranges from 1 
to M. It is easily verified that when the three I EI 
values are equal,  the above index configurat ion leads 
to some redundan t  calculat ions the result of  which 
is invar iant  under  a permuta t ion  of the pairs of  
indices. Accordingly,  in order to s implify the calcula- 
tion it is convenient  to define new indices as 

l/k=½(U2k_l--1)U2k_i+U2k , k = 1 , 2 , 3 .  (A.27) 

It is then sufficient to let Ul range from 1 to M, u 3 
from 1 to ui and  us from 1 to u 3. We further introduce 
mult ipl ic i ty  factors depend ing  on whether  vl, v2, v3 
are all different, Vl = v2 ~ v3, z,a # v2 = v3 or Vl = v2 = 
%. The E-dependen t  Bessel functions are stored out- 
side the summat ion  loop in arrays of  the form 

Dj(p, Vk)= Jp[TraEj(U2k_i + U2k)l/2] (A.28) 

and the triple products such as those in (A.4) can be 
computed  as 

T123 = D,(p ,  vI)D2(p, v2)D3(p, v3), (A.29) 

where the subscripts on T pertain to the subscripts 
on the I EI values. In the general  case, i.e. for unequa l  
]E['s, we can still retain the restricted ranges of  the 
summat ions  by symmetr iz ing TI23. This is s imply  
achieved by comput ing  the expression 

1(T123-1- T312 q-- T231 q- T132 q- T321-1- T213). (A.30) 

Since only some of  the terms require such a sym- 
metrization, the comput ing  effort is thus again sig- 
nificantly reduced.  
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Abstract  

The condi t ional  probabi l i ty  density funct ion of  a 
three-phase invariant  is computed from exact 
expressions derived and  discussed in the first paper  
of  this series [Shmueli ,  Rabinovich  & Weiss (1989). 
Acta Cryst. A45, 361-367] and comparisons  are pre- 
sented of  these computat ions  with the approximate  
condit ional  density due to Cochran  [Acta Cryst. 

(1955), 8, 473-478]. Condi t iona l  variances computed  
from the exact and approximate  expressions are also 
compared.  The computat ions  are carried out for the 
space group P1. This is the first numerical  compar i son  
of  condi t ional  phase- invar iant  statistics evaluated 
from exact and  approximate  expressions.  The dis- 
crepancy between these two kinds of statistics appears  
to be negligible if  the E values involved are small  
and the n u m b e r  of atoms in the cell is modera te ly  
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large. Very significant discrepancies are observed 
when the number of the atoms in the unit cell is small, 
as well as in the case of the presence of an outstand- 
ingly heavy atom. For a given triplet of magnitudes 
of E values or a fixed atomic composition of the unit 
cell the exact conditional density functions tend to 
have sharper peaks than the approximate ones. 

Introduction 

The triple product of normalized structure factors 

E(  h k l ) E (  h ' k ' l ' ) E ( - h  - h', - k  - k', - l -  l') 

or briefly E ( h ) E ( k ) E ( - h - k )  is one of the most 
important relationships in the theory and practice 
of direct methods of phase determination. These 
methods rely rather heavily on probabilistic 
approaches. In particular, the conditional probability 
density function (c.p.d.f.) of the three-phase structure 
invariant 

~ h  "~- ~ k  "~- ~ - h - k  ~-~ (~) (1) 
is of interest; the conditioning is here on the knowl- 
edge of the corresponding magnitudes I Ehl, lEd and 
[E-h-d, hereafter denoted by El, E2 and E3, 
respectively. 

The c.p.d.f, in general use is that due to Cochran 
(1955) which, in a slightly modified form (e.g. 
Giacovazzo, 1980), reads 

p(@IE~,E2 ,  E3)=[2zr lo(K)]  -~ exp(K cos @), (2) 

where 
N 

K = 20-30"23/2EiE2E3, o'n = ~ Z~. 
j = l  

and Io(x) is a modified Bessel function of the first 
kind. Various approximations to (2) have been pub- 
lished over the years in terms of series expansions in 
orthogonal polynomials (e.g. Naya, Nitta & Oda, 
1965; Hauptman, 1971; Giacovazzo, 1974), as well 
as exponentiated forms of these series (Karle, 1972; 
Karle & Gilardi, 1973; Peschar & Schenk, 1986). 
However, since no exact and computable results have 
appeared in the literature, it has so far been imposs- 
ible to assess the accuracy of the Cochran approxima- 
tion and its generalizations. 

In paper I of this series (Shmueli, Rabinovich & 
Weiss, 1989; hereafter SRW) we gave an exact rep- 
resentation for the c.p.d.f, of @ based on its expansion 
into a sixfold Fourier series. The coefficients of this 
series have been shown to be expressible in terms of 
characteristic functions, and we have pointed out a 
number of techniques that allow us to make accurate 
numerical calculations of p(@lE~, E2, E3). In the 
present paper we examine the accuracy of the 
Cochran approximation, paying particular attention 
to three factors that are important in practice: (1) the 
effect of a small number of atoms in the unit cell; (2) 

dependence of p(@IE], E2, E3) on the individual 
values of the E's; and (3) the presence of an outstand- 
ingly heavy atom. We will see that, in agreement with 
our earlier studies comparing approximate and exact 
values of the c.p.d.f.'s required for the use of methods 
based on ~ and ~2 (Shmueli & Weiss, 1985, 1986), 
approximations based on the central limit theorem 
produce probabilities that may be significantly lower 
than those found from our more accurate calcula- 
tions. 

Calculations and results 

The results presented below were obtained from 
hypothetical atomic contents in a unit cell of the space 
group P1. The computation was carried out using 
Fortran programs based on appropriately sym- 
metrized versions of (10) in SRW, with a Cyber 180- 
990 computer and a NOS/VE operating system. The 
use of this system allowed us to take advantage of 
virtual memory and to work with large arrays that 
may be used to eliminate many repetitive calculations. 
The expressions found in paper I involve two kinds 
of summations: (i) those associated with the Fourier 
series and (ii) those associated with the inner 
expansion of exponentials in series of Bessel func- 
tions. Each of the results presented below is accom- 
panied by a fraction N 1 / N2, where N 1 is the number 
of terms in a single Fourier summation required for 
its approximate convergence, and N2 is the corre- 
sponding number of terms in a series of Bessel func- 
tions [e.g. (17) in SRW]. The results of most computa- 
tions of the c.p.d.f, of • are presented in the 0-90 ° 
range, at 5 ° intervals (more detailed computations, 
not presented here, show that the c.p.d.f, in the 90- 
180 ° range is fiat and featureless). 

In addition to our calculation of the c.p.d.f.'s of 
as function of the relevant parameters (i.e. atomic 
composition and IEI values) we have also computed 
the conditional variance of • from the expression 
derived in Appendix A. These conditional variances 
are compared with those based on the Cochran 
approximation given in (2) (Karle & Karle, 1966) in 
Table 1. 

An indication of the effect of the magnitudes of 
the I E[ values on the c.p.d.f, of a three-phase invariant 
is found in the comparison of exact and approximate 
results in Fig. 1. Fig. 1 (a) compares the exact c.p.d.f. 
and the approximation (2) for El = E2 = E3---1"50, 
for an equal-atom structure containing 40 atoms in 
the unit cell of P1. The comparison shown in Fig. 
l(b) differs from that in Fig. l (a)  only in that the 
three [EI values are each equal to 2.50. The agreement 
between the exact and approximate results shown in 
Fig. l (a)  is very good - although the approximate 
c.p.d.f, tends to underestimate slightly the exact result 
in the region (0-60 °) of q0. The discrepancy between 
exact and approximate c.p.d.f.'s is considerably 
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Table 1. Conditional variance of the three-phase 
invariant 

The table compares the square roots of  the conditional variances 
of  ~, computed from the exact and approximate expressions. Each 
row of the table pertains to one of  the figures in this paper. The 
first column contains the number of  a figure, the second column 
contains the square root of  (~21E ~, E2, E3) computed from a sym- 
metrized version of  (A.3) and denoted by trex(~) (in degrees), and 
the third column contains the square root of  the corresponding 
conditional variance of  qb computed from the Cochran (1955) 
c.p.d.f, with the formula given by Karle & Karle (1966) and denoted 
by trco(~) (in degrees). 

Figure °rex(~) ~co(~)  
l(a) 67.632 70.689 
l(b) 21.987 27.504 
2(a) 8.634 22.371 
2(b) 13.820 25.046 
3 8.600 18.415 

greater in Fig. l(b).  This discrepancy is also evident 
in the comparison of corresponding conditional vari- 
ances given in Table 1. 

Far more drastic effects are caused by having a 
small number of atoms in the unit cell. The results 
displayed in Fig. 2 are for equal-atom structures for 
the specific normalized structure factors E1 =2.00,  
E2 = 2.25 and E 3 = 2"50 ;  Fig. 2(a) compares the exact 
and approximate c.p.d.f.'s for ten atoms in the unit 
cell, and Fig. 2(b) for 15 atoms in the unit cell. The 
exact c.p.d.f, of @ in Fig. 2(a) is much sharper than 
the approximate c.p.d.f. (2). This is of course con- 
sistent with the increased certainty of phase determi- 
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Fig. 1. Effect of  the magnitude of  E on the c.p.d.f, of  qb. Com- 
parison of  c.p.d.f.'s computed from the exact expression of SRW 
(black circles) and modified Cochran's (1955) approximation 
(2) (solid line) for 40 equal atoms in the unit cell of  P1. The 
angle qb is given in degrees. (a) E I = E 2 = E 3 = 1.50, N1 = 10, 
N 2 = 9 .  (b) Et=EE=E3=2"50, N 1 = 1 5 ,  N 2 = 9 .  

nation as one approaches the region of validity of 
inequalities derived from Hauptman-Kar le  deter- 
minants (e.g. Giacovazzo, 1980). The discrepancy in 
Fig. 2(b) is also significant; however, it is appreciably 
smaller than that in Fig. 2(a). A qualitatively similar 
result was obtained in comparing an exact c.p.d.f, for 
Y.~ with an approximate c.p.d.f., in examining the 
effects of the paucity of atoms on these statistics 
(Shmueli & Weiss, 1985). 

Fig. 3 illustrates the effect of the presence of an 
outstandingly heavy atom on the discrepancy between 
the exact and approximate c.p.d.f.'s. The effect of 
atomic heterogeneity on intensity (e.g. Shmueli, 
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Fig. 2. Effect of  the paucity of  atoms on the c.p.d.f, of  ~. Com- 
parison of  c.p.d.f.'s computed from the exact expression of  SRW 
(black circles) and modified Cochran's (1955) approximation 
(2) (solid line). The figure is based on the magnitudes: E~ = 2.00, 
E2 = 2.25, E3 = 2.50. The angle • is given in degrees. (a) Ten 
equal atoms in the unit cell of  P1, N1 = 17, N2  = 12. (b) Fifteen 
equal atoms in the unit cell of  P1, N1 = 10, N2  = 9. 
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Fig. 3. Atomic heterogeneity and the c.p.d.f, of ~. Comparison of  
c.p.d.f.'s computed from the exact expression of  SRW (black 
circles) and modified Cochran's (1955) approximation (2) (solid 
line) for the hypothetical composition C~4Br of  the unit cell of  
P1. All three E's  are assumed to equal 2.00, and the summation 
ranges are N1 = 15 and N2  = 9. The angle qb is given in degrees. 
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Weiss, Kiefer & Wilson, 1984) and phase (e.g. 
Shmueli & Weiss, 1986) statistics was emphasized in 
our earlier studies, and we thought it of interest to 
examine this problem in the present work as well. 
The effect of the heavy atom is to sharpen the c.p.d.f. 
(and decrease the conditional variance) relative to 
those obtained from Cochran's c.p.d.f. (see Fig. 3 and 
Table 1). This is qualitatively similar to the effect 
caused by a small number of identical atoms in the 
unit cell. It follows that the use of Cochran-type 
c.p.d.f.'s in the presence of a small number of atoms 
in P 1, or else a strongly heterogeneous atomic compo- 
sition therein, significantly underestimates condi- 
tional probabilities for the three-phase invariant. This 
conclusion is consistent with those to which we were 
led in our previous studies of exact c.p.d.f.'s (Shmueli 
& Weiss, 1985, 1986). We point out that the hetero- 
geneity examined here is relatively small and higher 
atomic numbers of the heavy atom will lead to a 
further sharpening of the c.p.d.f. However, few such 
calculations were carried out since high hetero- 
geneities (just as very small numbers of atoms, i.e. 
less than 10) lead to difficulties in the convergence 
of the Fourier series for the c.p.d.f. - at least with the 
present version of our computer programs. 

Concluding remarks 

The three-phase invariant has been studied by a num- 
ber of investigators because of its great importance 
in applications to direct methods of phase determina- 
tion. However, all these studies are based on the 
central limit theorem and its extensions. Without an 
exact theory together with numerical evaluation of 
the results of the theory it has been impossible to 
assess the accuracy of Cochran's (1955) approxima- 
tion, or any of its generalizations. 

In the present paper we give the first accurate 
numerical evaluation of exact expressions for the 
c.p.d.f, of a three-phase invariant. Because of the 
complexities of the calculations the techniques that 
we have used are neither ripe nor essential for routine 
practical applications. Even with the many sim- 
plifications of the algorithms resulting from inherent 
symmetries in our expressions (Shmueli, Rabinovich 
& Weiss, 1989), computing times are still of the order 
of 10 min per invariant thereby rendering the compu- 
tations too expensive for routine use. 

The main merit of the present results is that they 
allow one to test the accuracy of various approxima- 
tions to the exact c.p.d.f., and assess the circumstances 
under which currently available approximate 
methods deviate considerably from the conditional 
densities. The variances displayed in Table 1 show 
that the exact c.p.d.f.'s are often much sharper than 
the approximate ones, thus emphasizing the conserva- 
tive character of the latter. This is concurrent with 

our earlier results on problems of sign determination 
(Shmueli & Weiss, 1985, 1986). The discrepancy 
appears to be negligible when the number of atoms 
in the unit cell is large and the degree of atomic 
heterogeneity is small. Our results indicate that when 
either of these conditions is violated this discrepancy 
can be most significant. 

This research was supported in part by grant No. 
84-00076 from the United States-Israel Binational 
Science Foundation (BSF), Jerusalem, Israel. All the 
computations related to this paper were carried out 
at the Tel Aviv University Computation Center on a 
Cyber 180-990 computer. 

APPENDIX A 
Derivation of the exact conditional variance of 

Our starting point for this derivation is equation (10) 
of SRW, with the various quantities defined by 
equations (11), (17) and (9) of that paper. If we 
collect the terms depending on /t and -A,  we can 
write the c.p.d.f, of • as 

p(clgIE,,E2, E3)=K'Y. C.Z' ,  (A.1) 
u 

where u T = (ul ,  u2, u3, /'/4, /'/5, U6) is the vector of 
summation indices, Cu(A) = Cu(-A)  are the Fourier 
coefficients defined by (17) in SRW, Z" is given by 

co 

Z',, = Go+2 Y. (-1)PG2p cos (2pA) cos (2pqb) 
p = l  

oo 

- 2 i  ~ ( -1 )PG2v_~cos[ (2p-1)A]  
p = !  

x cos [(2p - 1) qb], (A.2) 

and the quantities G,, are triple products of Bessel 
functions defined by (A.4) in SRW; the normalization 
constant K '  is given by (11) in the latter reference. 

It can be easily shown that the conditional mean, 
(q~[ E~, E2, E3) vanishes. Hence, straightforward inte- 
gration shows that the conditional variance of • is 
given by 

co 

(~21E,,E2, E3)= Tr2/3+87rK'~e~, C. Y~ ( -1 )  v 
u p = l  

x(K2pG2p+iK2p_,G2p-,), (A.3) 

where 

Km= cos (mA)/m 2. (A.4) 

The conditional variance of the Cochran (1955) 
c.p.d.f, has been given by Karle & Karle (1966). Note 
that the leading zr2/3 term appears in both the exact 
and approximate formulations of the variance. 
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Abstract 

A comparative study has been undertaken of the 
employment of Gaussian and exponential charge dis- 
tribution functions in calculating Coulomb poten- 
tials, energies and fields at arbitrary points due to 
lattice slices, using the Ewald method. The APL 
program SURFPOT has been developed for this pur- 
pose, for a general crystal structure with user-defined 
slice orientations and slice boundary configurations. 
Results are presented for the (111) face of NaC1, 
(001) and (112) faces of aragonite (CaCO3) and (001) 
face of phlogopite (KM3T4OIo(OH)2, M = divalent 
cation, T4 = Si3A1]. The convergence behaviour of the 
potential sums is consistently and considerably better 
when the Gaussian form is used. 

1. Introduction 

Since the predominant mechanism of crystal growth 
is growth by slices, the availability of generally appli- 
cable methods for calculating potentials, electric 
fields, energies and interaction energies of lamina- 
shaped lattices is essential to the study of crystal 
growth. The slices under consideration are parallel 
to (hkl), have infinite extent in two dimensions and 
thickness dhkl , or some fraction thereof, in the third. 
They are charge-neutral and usually nonpolar. The 
points at which potentials and fields are required are 
arbitrary and may be outside the slice or within it or 
coinciding with ion sites. Formulating the problem 
for the face (001) instead of (hkl) does not constitute 
any real limitation. A new unit cell can always be 
found, such that the required face (hkl) in terms of 
the original cell parameters becomes transformed to 
(001) in terms of the new. 

0108-7673/89/060371-10503.00 

The most widespread method for calculating 
Coulomb potentials in ionogenic structures is the 
method of Ewald (1921). It is essentially based on 
the introduction of a continuous spherically sym- 
metric charge distribution function cr dependent on 
an adjustable parameter r/, in addition to the distance 
from a given ion (Tosi, 1964). Thus the charge density, 
and hence also the potential, are split into two contri- 
butions; one formulated in the direct lattice, the other 
in the reciprocal. Each potential sum converges 
independently but depends on r/, whereas the total 
potential is independent of 77. Thus *7 functions as 
the radius of a convergence sphere and is adjusted 
so as to optimize the convergence of both sums. As 
will be shown in §2, neutrality of the unit cell 
guarantees convergence of the potential expression 
for an individual slice. 

The Ewald method assumes its simplest form in 
the case of an infinite lattice but has been extended 
to laminas and to semi-infinite lattices, which are 
infinite only on one side of a plane, the other side 
being empty (Hartman, 1958; Heyes & van Swol, 
1981). The lamina case is most useful because the 
laminas may be stacked at will. Should an infinite or 
semi-infinite lattice be of interest, then a limited num- 
ber of slices need to be stacked to obtain the most 
satisfactory approximation, i.e. convergence in the 
third dimension, provided the chosen unit cell 
possesses no component of dipole moment perpen- 
dicular to (hkI). 

The traditionally chosen functional dependence of 
tr on the distance from a given ion is Gaussian, but 
several other possibilities, including the exponential, 
have been proposed and applied, mostly to rather 
simple structures. Such an application to a cubic 
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